Heavy flavour & Jet Summary

Shingo Sakai (Univ. of Tsukuba)

Heavy flavour & jet topics in QM (from Experimental Summary)

- Heavy flavour (experiment : 2 plenary +13 parallel talks)
 - D meson production at $\sqrt{s_{NN}} = 16.8 \text{ GeV}$ (NA61/SHINE)
 - ALICE first measurement of B mesons in pp collisions
 - \blacktriangleright Charmonium suppression $\psi(2S)$ / J/ ψ
 - First charm baryon v_2 (Λ_c) in ALICE
 - Top quark productions in Pb-Pb collisions in ATLAS
 - Heavy-flavour production in UPC
- Jet (experiment : 2 plenary + 17 parallel talks)
 - Heavy-flavour jet productions in pp collisions (b-tag, D⁰-tag, Λ_c -tag)
 - Jet internal structure in Pb-Pb (Energy-Energy Correlators)
 - Medium response with Z hadron correlations
 - Jet hadrochemistry

Jana (4/12, Sat.)

Hard probes production in heavy-ion collisions (pA & AA)

Hard probes (D, B, jet, W, Z …)

■ Large transverse momentum, Large mass (> ∧_{QCD} ~ 200 MeV)

Produced initial hard scattering

xf

Initial state

Gluons in nuclear (nPDF)

- Parton (gluon) PDF is modified by nuclear medium
 - Suppression at small x (shadowing)
 - Suppression of particle production in small x w.r.t. pp
 - Large uncertainty => Important to constrain the nPDF by data

- Gluons in nuclear and nucleon
 - Gluon emission (splitting)
 - Dominant process in small x (large E)
 - Gluon recombination
- Colour Glass condensate
 - Gluon emission = Gluon recombination
 - Key to QGP formation

5

Patrycia Anna Potepa (4/8, Tue)

- First observation of t-tbar production cross section in Pb-Pb collisions
- Good agreement with NNLO calculation for three nPDFs (nNNPDF3.0, nCTEQ15HQ, EPPS21)
 - nNNPDF3.0 is rather overestimate the cross section in p-Pb

D meson production and nPDF

Xiao Huang (4/9, Wed)

Incoherent J/psi in UPC

Final state

Feature of particle productions in QGP

(1) Suppression of charged particles

Parton energy loss in QGP

(2) Azimuthal anisotropy v_2

 $dN/d(\phi-\psi_{RP}) = ... + N_0(1+2v_2\cos(2(\phi-\psi_{RP}))) +...$

(3) Medium response

Hot topic

* v₂ signal also observed in small system (high multiplicity pp collision events, pPb, dAu) => small system in QGP ?

Medium response (model predictions)

(CO)LBT-hydro, JETSCAPE PLB 777 (2018) 86 γ -jet + Medium Excitation -7 7 5 0.6 0.5 3 0.4 0.3 **Depletion** 1 0.2 ŋ 0.1 -1 0.0 -0.1-3 -0.2-0.3-5 $\tau = 4.8 \, fm/c^{-1}$ -7 -7 -3 -7 -5 -1 3 5 x

Recoil + Hydro model

Partons of QGP constituent are scattered by hard parton

Mach cone like structure in jet direction => enhancement
Diffusion wake in opposite direction of jet => suppression

Energy-energy Correlator

$$\frac{d\sigma_{EEC}}{dR_L} = \sum_{ij} \int d\sigma(R'_L) \frac{p_{T,i}p_{T,j}}{p_{T,jet}^2} \delta(R'_L - R_{L,ij})$$

- Mapping time evolution of jet formation
 - Large R_L : partonic, perturbative
 - Middle R_L : confinement phae
 - Small R_L : hadronic phase

Results from small systems

High $p_{\rm T}$ particle production in small systems at RHIC

- QGP in small system ?
 - Observed positive v₂ in small systems (presentation by Y. Sekiguchi)
- **PHENIX & STAR** results shows a suppression at high p_T
 - Centrality bias in the STAR result ? (not the case in the PHENIX result)

|4

Anjali (4/7, Mon)

Modification of jet internal structure in p-Pb (1)

- p_T spectrum for jet in p-Pb is not modified in p-Pb collisions ($R_{pPb} = I$)
- However, jet internal structure (EEC) is modified in p-Pb collisions
 - Tension at large R_L w.r.t. model with nPDF

Modification of jet internal structure in p-Pb (2)

 v_2^* : long range elliptic anisotropy in jet axis frame

- Long range correlation w.r.t. jet axis in p-Pb (jet frame)
- v_2^* for smaller $Z_g \theta_g$ is consistent with PYTHIA calculation
- Observed v_2^* enhancement w.r.t. PYTHIA for hard splitting (larger $Z_g \theta_g$)

Multiplicity in jet

- Zg : transverse momentum balance
- Og : angular separation

Results from Heavy-ion collisions

Heavy-flavour $v_2(1)$

• $v_2(c) > v_2(b)$

Clear mass dependence of v₂ in charm and beauty

 $\bullet \mathbf{v}_2(\Lambda_c) > \mathbf{v}_2(\mathsf{D})$

Baryon / meson splitting in v_2 also in heavy flavour

- NCQ scaling is violated for both light and heavy flavours at LHC energies
 - similar trends in data and models

Energy loss vs. Jet internal structure

- Jets suppression in heavy ion collisions depends on the internal structure of the jet
 - Jets with wider angular separations between subject stronger suppression

- Reconstructed R=1 jet
 - Re-clustering R= 0.2 jet in side the jet

Gabe Dale-Gau (4/8, Tue)

Sierra Weyhmiller (4/8, Tue)

Jet hadrochemistry (1)

- Baryon enhancement (proton) w.r.t. pp collisions observed in Au+Au collisions at RHIC
- **\square** p/π ratio in jets are smaller than the ratio of inclusive in AA collisions
 - LHC : p/π ratio in jets in Pb-Pb is larger than the ratio in jets in pp collisions
 - **RHIC** : p/π ratio in jets in AuAu is same as ratio in jets in pp collisions

Jet hadrochemistry (2)

- k/π ratio in Pb-Pb collisions is larger than the ratio in pp collisions
 - Strangeness enhancement in Pb-Pb collisions
- \blacksquare k/ π ratio in jets in Pb-Pb collisions is larger than the ratio in jets in pp collisions
 - Same trend as p/π ratio

EEC in Pb-Pb collisions (1)

A. Ray (4/7, Mon)

- Internal structure of jets (EEC) is modified in Pb-Pb collisions
 - Suppression at large R_L (partonic phase)
 - Suppression shift smaller R_L w.r.t jet p_T ?
 - Enhancement at small R_L (hadroic phase)

$$\frac{d\sigma_{EEC}}{dR_L} = \sum_{ij} \int d\sigma(R'_L) \frac{\rho_{T,i} \rho_{T,j}}{\rho_{T,jet}^2} \delta(R'_L - R_{L,ij})$$

A. Ray (4/7, Mon) J.Viinikainen (4/10,Thu.)

EEC in Pb-Pb collisions (2)

- EEC measured by CMS (R=0.4, $p_T > 120$ GeV/c)
 - EEC suppression around $R_L = 0.1$ and enhancement around $R_L > 0.2$
- Comparison model of medium response (Hybrid model)
 - Challenge to explain the EEC for high p_T jet ($p_T > 80$ GeV/c)

Medium response in AuAu collisions

- Modification of away-side jet production in AuAu collisions
 - Enhancement of low p_T particle productions
- Experimental results in different p_T range for the associated hadron prefer the model with medium response (wake)
 - Same picture as LHC results

Yen-Jie Lee (4/9, Wed.)

-5

-3

-1

x

5

-7

Medium response by Z-hadron correlation

- Diffusion wake ?
- Models include wake (positive and negative) reproduces the data

Summary

nPDF study in LHC

- New approach by top quark, photonuclear production of heavy flavours
 - Good agreement with model with nPDF, but observed some tension

Hard probes in small system

- Suppression is observed in RHIC, but not in LHC
- Modification of jet internal structure in pPb ?
 - ▶ Modified EEC & enhancement v_2^* at high multiplicity w.r.t QCD prediction

Hard probes in AA collisions

- Clear mass & baryon / meson splitting in heavy-flavour v₂
- Modification of EEC
 - Model with medium response doesn't reproduce the trend for high p_T jet and large R_L
- Signal of diffusion wake in Z-hadron correlation