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Probing the strong force by studying partons in medium
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When a high-energy parton (quark or gluon) traverses a cold nuclear medium (like 
in proton-nucleus or lepton-nucleus scattering) or a hot QCD matter (in nucleus-
nucleus scattering), it interacts with the surrounding environments, which act as 
femto-scale labs for studying parton propagation, interaction, and hadronization. 

Figures by BNL
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Cold Nuclear Matter Effects

✓ Nuclear parton distribution functions (initial)


✓ Gluon saturation effect (initial)


✓ Energy loss effect (initial & final)


✓ Comover (final)


✓ Nuclear absorption (final)

RpA =
dσpA

Adσpp

High-energy proton-nucleus (pA) collisions enable the study of cold nuclear 
matter (CNM) effects.

J/ψ
D

γ

Smaller system Large system

CNM effects can be observed in 
large systems but pose a challenge 
for theory…



Parton energy-loss in cold QCD matter
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Unlike the "hot" medium of a Quark-Gluon Plasma (QGP), cold QCD matter consists 
of static nucleons in a nucleus, providing a cleaner environment to study parton’s 
propagation and hadronization.

1. Energy Loss: Emission of soft gluons due to multiple scatterings in the target.


2. Transverse Momentum Broadening: Partons acquire a "kick" ( ) as they 
travel.


3. Hadron or Jet Quenching: A reduction in the yield of high-energy hadrons 
compared to a vacuum (pp).

ΔpT

We can use these effects to tomographically study the properties of nuclear matter.

Primary medium effects



Transport coefficient
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E-loss happens via scattering with medium or induced gluon radiation:

E-loss is characterized by transport (diffusion) coefficient :


✓ : parton’s mean-free path in the medium.


✓ : typical momentum transferred from 1 soft scattering.


✓  with  : transverse momentum broadening in the medium.

̂q = μ2/λ
λ
μ
⟨k2

⊥⟩ ∼ ̂q tf tf ∼ k+/k2
⊥

J. D. Bjorken, FERMILAB-PUB-82-059-THY (1982) 
M. Gyulassy and X. N. Wang, NPB420, 583-614 (1994)

µ

λ

E

E − ΔE

k

* Formation time  : The distance it takes for the parton 
and gluon to separate enough to be distinct particles.

tf

̂qcold = 𝒪(0.01 − 0.1 GeV2/fm)
̂qhot = 𝒪(1 GeV2/fm)



Distinct E-loss regimes
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See, [Peigne, Smilga, Phys. Usp. 52, 659 (2009)]

➡ Bethe-Heitler regime:  

- Each scattering center acts as an independent source of radiation.


➡ Landau-Pomeranchuk-Migdal (LPM) regime:  

- An energetic parton is suddenly produced in the medium.


- A group of  scattering centers acts as a single radiator


➡ Fully coherent (Long formation time or Factorization) regime: 


- An energetic parton crosses the medium. 


- All scattering centers act as a source of radiation (fully coherent over medium)

tf ≪ λ

λ ≪ tf ≪ L

tf /λ

L ≪ tf

This talk will focus on LPM and FCEL.



LPM (+ nPDFs)



LPM E-loss
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ΔEBDMPS
LPM = ⟨ϵ⟩ = ∫ dϵϵ𝒫(ϵ) ∼ αs ̂q L2

Parametric dependence of LPM E-loss

✓ Important for hadron production in nuclear DIS (SIDIS), Drell-Yan, and jet in QGP.

✓ The fractional E-loss:   as . ΔE/E → 0 E → ∞

Baier, Dokshitzer, Mueller, Peigne, Schiff, 
NPB484, 265 (1997), Zakharov, JETP Lett.63, 952 
(1996), Wang and Guo, NPA696, 788-832 (2001), 
Gyulassy, Levai and Vitev, NPB 571, 197 (2000) 
…

Baier-Dokshitzer-Mueller-Peigné-Schiff and Zakharov (BDMPS-Z) framework 
describes radiative energy loss where successive scatterings interfere destructively.

Fig from [A. Accardi, F. Arleo, W.~K. Brooks, D. D'Enterria and 
V. Muccifora, Riv. Nuovo Cim. 32, no.9-10, 439-554 (2009)]



Probing LPM effect: The Drell-Yan Process
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A laboratory for sea quarks

or Z

xA,B = e±y Q2

s

: rapidity of the vitural 
photon in CM frame

y

dσDY ≈ ⊗ ⊗hB

2
hA

2 2

xA

xB q

q̄

l+

l−

❖ Factorization (Approximation) valid at :Q2 ≫ Λ2
QCD

❖ Color-Neutral Final State: Because the final lepton pair carries no color charge, it cannot 
radiate gluons.


❖ The Signature: Any suppression of DY yields in a nucleus compared to a proton could be 
due to the incoming quark losing energy before it hits an antiquark from the target.

Nonperturbative Parton Distribution Functions (PDFs) Probe (perturbatively calculable)

Q2
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Implementing LPM effect

Probability distribution (quenching weight) derived in Poisson approximation 
Baier, Dokshitzer, Mueller, Schiff, JHEP09, 033 (2001)

dσhA

dxFdM
= ∑

ij=q,q̄,g
∫ dx1 ∫ dx2 ∫ dϵ 𝒫(ϵ) fi/h (x1+

ϵ
Ebeam ) fj/A(x2)

d ̂σij(x1, x2)
dxFdM

Partons from the hadron projectile suffer multiple scattering in the target nucleus.

dI =
dσrad

dσel
=

∑ |Mrad |2

∑ |Mel |
2

dk+dk2
⊥

2k+(2π)3

The -integraed gluon radiation 
spectrum controls the quenching 
weight.

k⊥

𝒫(ϵ) =
∞

∑
n

1
n! [Πn

i=1 ∫ dωi
dI
dω ] δ(ϵ − ∑

i

ωi)exp [−∫
+∞

0
dω

dI
dω ]

F. Arleo, JHEP11, 044 (2002)



Experimental Evidence of LPM E-loss
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❖ Nuclear PDFs (nPDFs) alone cannot explain the suppression data; they predict a ratio close to 
unity in this specific kinematic range.


❖ Preliminary data suggest the existence of initial-state quark energy loss as modeled by the 
BDMPS (LPM) framework.

Feynman-x

xF = x1 − x2

F. Arleo, C. J. Naïm and S. Platchkov, JHEP01, 129 (2019)



Review: Parton Distribution Functions (PDFs)
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The longitudinal momentum 
fraction: x = k+/P+

P+

k+

Universality: The proton PDFs extracted from lepton-hadron scattering experiments can be 
applied to other scattering processes, such as hadron-hadron collisions.

The probability distribution for finding a parton 
with a given momentum fraction  when 
observing the inside of the proton at a certain 
resolution  :  

x

Q fi/p(x, Q2)

Sea quarks

Gluons

Valence quarks
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fp(x) =
1
2

uv(x) +
4
3

S(x)

fn(x) =
1
3

uv(x) +
4
3

S(x) fp(x) − fn(x) =
1
6

uv(x)

qq̄
Sea parton

✓ Valence partons determine the 
quantum numbers of a hadron, 
such as electric charge and 
baryon number.


✓ Sea quarks with a small 
momentum fraction are produced 
through quantum fluctuations 
and radiation effects.

Valence parton

q(x) = qv(x) + qs(x) Valence Parton has a long lifetime 
due to Lorentz time dilation.

They are effectively frozen during 
EM interactions in DIS.

Sea parton has a short life time.

x

xf(x)

x

xf(x)xf(x)

∼ 1/3

x ∼ 1/3
x ∼ 1/3x ∼ 1/3

x

Valence and Sea partons

Gluons and quarks are mixed through 
quantum evolution (radiation).



Nuclear PDFs
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•  for : Fermi motion


•  for : EMC effect


•  for : 
Antishadowing


•  for : Shadowing

RA > 1 x ≳ 0.8

RA < 1 0.25 or 0.3 ≲ x ≲ 0.8

RA > 1 0.1 ≲ x ≲ 0.25 or 0.3

RA < 1 x ≲ 0.1

RA
i (x, Q2) =

f p/A
i (x, Q2)
f p
i (x, Q2)



nPDFs from Global data fitting

15Uncertainties from different sets: EPPS, nCTEQ, NNPDF,…



FCEL



Nuclear suppression of hadron production
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σA = σN Aα

FNAL E866/NuSea Collab., PRL84, 3256 (2000). in pA @ FNAL ( )J/ψ sNN = 38.7 GeV

• Hadron ( ) yields are strongly suppressed


- at forward rapidity (large )


- at low 

J/ψ
xF = x1 − x2

pT

What is the origin of it?

−0.1 ≤ xF ≤ 0.3 0.2 ≤ xF ≤ 0.6

0.3 ≤ xF ≤ 0.93



 suppression from nPDFsJ/ψ
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arXiv:2506.17454 [hep-ph]

❖ nPDFs alone cannot describe  
suppression at FNAL.


❖ Additional suppression is required to 
explain the strong suppression.


❖ A produced heavy quark pair has a 
color charge in the final state, which is 
similar to the small-angle scattering of 
an asymptotic charge.  FCEL

J/ψ

→



FCEL energy loss
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✓ Important for small angle scattering, e.g., hadron production in pA collisions.

✓  cannot vanish as : important at all energies.ΔE/E E → ∞

Parametric dependence of FCEL E-loss

FCEL E-loss arises from the interference between gluon emission amplitudes off the 
initial-state and final-state partons.

ΔEFCEL ∼ αs
̂qL

Qhard
E Qhard = pT, MΥ, Mdijet, ⋯

Small angle scattering Cf. Large angle scattering



Setup of FCEL

20

*Viewed in target rest frameTarget size L

ω, k⊥

❖ Parent parton from the projectile undergoes:

✓ single hard scattering with  an exchanged momentum.


✓ multiple soft scatterings: .


❖ Radiated gluons:  soft ( ) and small angle ( ) radiation 

❖ Hadron of  is tagged.

❖ Recoiled parton assumed to be soft; kinematics remains the same (LT).

q⊥

l2
⊥ = (∑ li⊥)

2
∼ ̂qL ≪ q2

⊥, K2
⊥

x = k+/p+ ≪ 1 k⊥ ≪ k+

p′￼⊥ = zK⊥

Forward scattering of fast asymptotic parton with  crossing a nuclear medium E ( → ∞)

K⊥
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Induced gluon spectrum in LLA

❖ The “induced” -integrated gluon spectrum , given by interference terms 
 in leading-log approximation (LLA).


❖  and  cancel out (power suppressed) in .

k⊥ dI/dω
Re[(1 + 2)(3)*]
| (1 + 2) |2 | (3) |2 dI/dω

 Arleo, Peigne, Sami, PRD83, 114036 (2011)  
 Peigne, Arleo, Kolevatov, PRD93, 014006 (2016) 
 Munier, Peigne, Petreska, PRD95, 014014 (2017) 
 Armesto, Ma, Martinez, Mehtar-Tani and 
Salgado,PLB717, 280 (2012)

Initial state interaction Final state interaction

CR′￼

Ct

p⊥CR

ω
dI
dω

2→1

≈ Fc
αs

π
ln (1 +

l2
A⊥E2

ω2p2
⊥ ) − pp (lA⊥ → lp⊥)

  with ,  being a color rep. of incoming (outgoing) and -channel 
particle. Color charge = Casimir.
Fc = CR + CR′￼

− Ct R(R′￼) t t

For massive particle, p⊥ → m⊥



Phenomenology in LLA: e.g.  productionJ/ψ

𝒫(ϵ) ≃
dI
dϵ

exp {−∫
∞

ϵ
dω

dI
dω }

E
dσpA→J/ψ+X

d3p
= A∫

ϵmax

0
dϵ 𝒫(ϵ) E

dσpp→J/ψ+X

d3p
E→E+ϵ

Energy (rapidity) shift

x = ϵ/E

❖ Probability distribution (quenching weight) derived 
in double-log approx. (DLA). Baier, Dokshitzer, Mueller, Schiff, 
JHEP09, 033 (2001)


❖ As shown in the LPM E-loss, the induced gluon 
spectrum controls the shape of the quenching 
weight, leading to hadron quenching in the cold 
nuclear medium.


❖ To derive the induced spectrum, we resum all 
orders in opacity .n̄ = L/λ



 suppression and FCEL effectJ/ψ
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FNAL RHIC LHC

Arleo and Peigne, PRL109, 122301 (2012), JHEP03, 122 (2013)

❖ FCEL describes the  dep. from FNAL to LHC.

❖ Parameters are fixed at FNAL.


❖ FCEL is different from gluon saturation. There is FCEL effect even at high- .

s

x



Transport coefficient
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̂q ∼ ̂q0 ( 10−2

x )
0.3

- Consistent with perturbative calculations


- : fixed by fitting data

- QCD evolution is not considered for simplicity

- : determined by Glauber theory

̂q0 = 0.07 − 0.09 GeV2/fm

L

•  is the only free parameter in the model.

• Parametrization of the transport coefficient:

l2
⊥ ≃ ̂qL

• In the small-  limit, we could read , 
but cannot derive it analytically. Baier, Dokshitzer, 
Mueller, Peigne and Schiff, NPB484, 265 (1997)

x ̂qL ∼ Q2
s

τ ∼
Q2

Q2
0 ( x

x0 )
λ



ω
dI
dω

2→2

= ∑
R

ρR FR
αs

π
ln (1 +

l2
A⊥E2

ω2K2
ξ ) − pp

25

Simplification: The induced soft gluon cannot probe the dijet constituents but see their 
global color state  in LLA (PDA: Point-like Dijet Approximation) with :R ξ ∼ 1/2

Dijet inv. mass

p+
1

ω, k⊥

CR

Induced gluon spectrum for  in LLA2 → 2
 Liou, Mueller, PRD89, no.7, 074026 (2014) 
 Peigne, Kolevatov, JHEP01, 141 (2015)  
 Arleo, Peigne, PRL125, no.3, 032301 (2020)  
 Arleo, Cougoulic, Peigne, JHEP09, 190 (2020)

e.g.  : gg → QQ̄ 3 ⊗ 3̄ = 1 ⊕ 8

probability for dijet to be 
produced in color state R

 with  global Casimir charge in FR = C1 + CR − C2 CR R

C1

C2



Hadron quenching in LLA (PDA, )ξ = 1/2
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Arleo, Peigne, PRL125, no.3, 032301 (2020)  
Arleo, Cougoulic, Peigne, JHEP09, 190 (2020)

❖ Significant suppression even without nuclear shadowing effect


❖ The suppression patterns depend on  of a produced parton pair.R

Arleo, Jackson, Peigne, JHEP01, 164 (2022)
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dI
dx

= Φαβ S(x)βα = Tr [Φ ⋅ S(x)] with x = ω/E

Coherent radiation beyond LLA

dI
dx

ξ→0

= ∑
αt

Φt
αtαt(C1 + C3 − Cαt

)
αs

πx
ℒ(ξ = 1)

 : soft color matrix 
A matrix that describes the soft, medium-induced radiation. It depends on the kinematics 
( ) and medium properties.

S

x, ξ

G. Jackson, S. Peigné, KW, JHEP05, 207 (2024) 

 : color density matrix 
Gauge-invariant matrix that quantifies the color entanglement of the underlying hard 

 scattering amplitude. It is a property of the hard process itself.

Φ

2 → 2

The medium-induced soft gluon radiation spectrum for all  partonic scattering channels, 
valid in the full kinematic range .

2 → 2
0 ≤ ξ ≤ 1



Matching with LLA results
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(1) Matching for :ξ = 1/2

 : probability of the s-channel irreps. ρα α

dI
dx

ξ=1/2

=
αs

πx ∑
α

Φs
αα (C1 + Cα − C2) ℒξ=1/2

(2) Matching in  limit:ξ = 0

dI
dx

ξ=0

=
αs

πx ∑
αt

Φt
αtαt

(C1 + C3 − Cαt) ℒξ̄=1

(3) Matching in  limit:ξ = 1
dI
dx

ξ=1

=
αs

πx ∑
αu

Φu
αuαu (C1 + C4 − Cαu) ℒξ=1

Diagonal in s-channel basis

Diagonal in t-channel basis

Diagonal in u-channel basis

 is independent of the color basis, but  can be diagonalized in some basis.dI/dx S

 : probability of the t-channel irreps. ρt
αt αt

 : probability of the u-channel irreps. ρu
αu αu



0.0

0.25

0.5

0.75

1.0

ω

0.0 0.1 0.2 0.3 0.4 0.5
x

channel: q g → q g

dI/dx < 0

dI/dx > 0

Illustration: Fully Coherent Energy Loss vs. Gain
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dI2→2

dx
ξ=1/2

=
αs

πx [ρ3 C3 + ρ6̄ C6̄ + ρ15 C15] ℒξ=1/2

dI2→1

dx
ξ=0

=
αs

πx [ρt
1 (2CF) + ρt

8 (2CF − Nc)] ℒξ̄=1

dI2→1

dx
ξ=1

=
αs

πx [ρu
3 Nc + ρu

6̄ − ρu
15 ] ℒξ=1

Quark-gluon scattering processes

 in s,u-channel

 in t-channel

α = (3, 6̄, 15)
α = (1, 8)

No energy loss (and gain) 
at the boundary

l⊥A = m⊥/4, l⊥p = m⊥/10

dI
dx

ξ=1/2

=
αs

πx [ρ3 (2CF − Nc) + ρ6̄ (2CF − 1) + ρ15 (2CF + 1)] ℒξ=1/2

dI
dx

ξ=0

=
αs

πx [ρt
1 (2CF) + ρt

8 (2CF − Nc)] ℒξ̄=1

dI
dx

ξ=1

=
αs

πx [ρu
3 Nc + ρu

6̄ − ρu
15 ] ℒξ=1

FCEL

FCEG

G. Jackson, S. Peigné and KW, JHEP05, 207 (2024) and 
[arXiv:2504.16647 [hep-ph]]

❖ The negative spectrum is not unphysical; 
we can interpret it as energy gain.


❖ We could construct a quenching weight 
from the new spectrum. 

ℒξ ≈ log (1 +
ξ2l2

A⊥

x2m2
⊥ ) − pp



Photon production and FCEG

30

F. Arleo, D. Bourgeais, M. Guilbaud, G. Jackson 
and V. V. Torres, [arXiv:2512.02640 [hep-ph]].

FCEG

g γ



Perspectives



Biased nPDFs
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•  vs.  


• nPDFs can be reweighed by implementing both FCEL 
and nPDFs.

χ2( f′￼A |FCEL ∩ LHCb) χ2( fA |no FCEL ∩ LHCb)

arXiv:2506.17454 [hep-ph]



Color Glass Condensate (CGC): Dense gluonic matter
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N
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on

DGLAP

BFKL

BK-JIMWLKY
=

ln
(1

/x
)

ln Λ2
QCD ln Q2

αs ≪ 1

Q2
s (Y)

Saturation/CGC

Dilute region

Relatively dense region
❖ QCD predicts that ANY hadrons and nuclei become a 

dense gluonic state, the so-called Color-Glass-
Condensate (CGC), at extremely high energy.


❖ In the CGC state, the gluon density inside nuclei is 
saturated, resulting in unique saturation phenomena.

 LHC (p)∼  LHC (A)∼

Dynamical saturation scale: 





for heavier nuclei  (Pb, Au)

Q2
sA =

Axfg/A(x)
S⊥

∝ A1/3x−0.3 ≫ Λ2
QCD

A1/3 ∼ 6



Remark on  and  broadeninĝq pT
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Δ⟨p2
T⟩pA = ⟨p2

T⟩pA − ⟨p2
T⟩pp = ̂q(x)LA ∼ Q2

sA
Baier, Dokshitzer, Mueller, Peigne and Schiff, NPB484, 265 (1997) 
Liou, Mueller, and Wu, NPA916, 102 (2013) 
Blaizot and Mehtar-Tani, NPA929, 202 (2014)

Arleo and Naïm, JHEP07, 220 (2020)

•   with  describes various data from large-x to small-x.

• Premature to conclude that the nonlinear saturation effect is seen. BFKL evolution could be seen.

̂q(x) ∝ x−α α = 0.25-0.30

Ru, Kang, Wang, Xing and Zhang, PRD103, no.3, L031901 (2021)

nPDFs + multiple-scattering

multiple-scattering

Conjecture in the small-x limit



Summary
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❖ FCEL(G) is significant for all hadron production, including heavy flavors, in pA 
collisions at all energies. Meanwhile, Drell-Yan (IS) and SIDIS (FS) are still sensitive 
to LPM effect.





❖ Findings from pheno study: FCEL should be more significant for particle production 
in pA collisions from low to high collision enegies.


❖ Other theoretical developments: In-medium DGLAP evolution kernal, 
renormalization group approach.


❖ Outlook: Saturation hunting and extracting precise information on nPDFs. 


❖ Puzzle: Jet quenching and flow in small systems (not discussed in this talk).

ΔEFCEL ∼ αs
̂qL

Qhard
E ≫ ΔELPM ∼ αs ̂qL2

Thank you!

LHCb



Backup



What is energy gain?
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The "induced" spectrum  is not positive definite, as it is the difference between 

radiation in pA and pp. A negative value means the projectile incurs less radiation 
within the nuclear target than it would in a vacuum.

dI
dx

FCEG is a direct consequence of coherent, medium-induced radiation allowed by first principles.

Medium enhances abelian-like 
radiation (narrow radiation cone 

)θs = q⊥/E

When the reduction in non-abelian 
radiation ( ) outweighs the 
increase in abelian radiation, the net 
induced spectrum is negative. 

θ > θs

∼ C1 + C3 ∼ − C2



Reference frame
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❖ Hadron rest frame: 

❖ Infinite momentum frame (IMF):  

Pμ = (M,0,0,0)
P ≫ M ⟹ Pμ = (P,0,0,P)

In IMF, partonic picture is manifest. PDFs are number densities.

❖ Light-cone coordinate: 

❖ Light-cone momentum: 

❖ Rapidity: 

❖ "Longitudinal" momentum fraction: 

x± = (t ± z)/ 2

p± = (E ± pz)/ 2

y =
1
2

ln ( p+

p− )
x = k+/P+

In IMF, 


If , 

Pμ → (P+,0−,0⊥)
Pμ = (P,0,0, − P) Pμ → (0+, P−,0⊥)

t

z

x+x−


