Hadron Physics Overview

Atsushi Hosaka RCNP, Osaka Univ.

Nov. 27-28, 2009 新学術領域 「多彩なフレーバーで探る新しいハドロン存在形態の包括的研究」 キックオフ会議

Nov 27-28, 2009

新ハドロンキックオフ

1

なにを目指すのか

電磁気学の確立, T.D. Lee

- マックスウエルの理論によっ て光の本質とそれが電磁気的な 現象であることが理解できた
- 全ての現代情報機器の開発が 可能になった
- 、、、相対論へと発展し量子
 力学の基礎を築いた、、、
- 前人未踏の領域に大きな一歩 を踏み出す、、、知的報酬、、

なにを目指すのか

電磁気学の確立, T.D. Lee

- マックスウエルの理論によっ て光の本質とそれが電磁気的な 現象であることが理解できた
- 全ての現代情報機器の開発が 可能になった
- 、、、相対論へと発展し量子
 力学の基礎を築いた、、、
- 前人未踏の領域に大きな一歩 を踏み出す、、、知的報酬、、

QCDの確立

- QCDによって物質形成の本質
 がクォークとグルーオンの現象
 であることが理解できた
- 全ての****の開発が可能
 になった
- 、、、**論へと発展し**
 力学の基礎を築いた、、、
- 前人未踏の領域に大きな一歩 を踏み出す、、、知的報酬、、

Quantum ChromoDynamics $L_{QCD} = \sum_{f} \overline{\psi}_{f} (iD - m_{f}) \psi_{f} + \frac{tr}{4} F_{\mu\nu}^{2}$ *Not easy to solve*

Millennium Problems of Clay math inst.

In order to celebrate mathematics in the new millennium, The Clay Mathematics Institute of Cambridge, Massachusetts (CMI) has named seven Prize Problems. The Board of Directors of CMI designated a \$7 million prize fund for the solution to these problems, with \$1 million allocated to each.

> Mass generation, Color confinement and Spontaneous breakdown of chiral symmetry

Strong interaction

 $m_e \sim 500,000 \text{ eV}$ $E_B \sim 1 \text{ eV}$

 $E_{\rm int}$ / Mass ~ 1 / 100000

Perturbation works well

Nuclei

 $m_N \sim 1,000 \text{ MeV}$ $E_B \sim 10 \text{ MeV}$ $E_{\rm int}$ / Mass ~ 1 / 100

Perturbation is NOT perfect

Hadrons

 $m_q \sim 10 \text{ MeV}$ $E_{\text{int}} \sim 300 \text{ MeV}$ (Light flavors)

質量生成からハドロンの構造と相互作用まで ハドロンは構造を持つ: クォークとグルーオン ハドロン形成の機構 質量の起源 現在の宇宙 初期の宇宙 ハドロンの世界 クォークの世界

我が国の理論研究

- *π*中間子の発見と核力の理解(湯川)
- ・カイラル対称性の自発的破れ(南部)
- ・クォーク模型による分光・相互作用
- ・有限温度・密度でのハドロン物質

実験施設の稼働とユニークなデータ・ 新粒子の発見を基盤にした研究 量子色力学から標準模型への発展 多体系の多様性の追求

最近の成果

- カイラル対称性とクォーク動力学
- ・エキゾチック粒子の反応・構造
- ・質量・相互作用の起源と変化

"マルチ"クォークのダイナミックス

計画研究E01の研究内容と組織

QCDから現象を再現 現象の予言

Nov 27-28, 2009

QCD複合系としてのハドロン、質量生成

- 標準としてのクォーク模型
- カイラルダイナミックスに基づいた相互作用

対称性の自発的な破れとその回復=>質量生成

- ハドロン分子の生成と固有な状態との混合
 =>励起状態の理解
- マルチクォーク系の様々な相関(挑戦的な課題)

クォーク模型から ハドロンの動力学まで

Nov 27-28, 2009

新ハドロンキックオフ

11

構成クォーク模型によるハドロン分光

SU(6)クォーク模型(+chiral meson)の成功~現象論

状態の分類、質量、電磁・強・弱結合(F/D比)

構成クォーク模型によるハドロン分光

SU(6)クォーク模型(+chiral meson)の成功~現象論

状態の分類、質量、電磁・強・弱結合(F/D比)

Takayama-Toki-Hosaka, PTP101 (1999) 1271-1283.

****, *** uds baryons

Magnetic moments of octet baryons

	<i>SU</i> (3)	SU(3)fit	QM SU(6) Exp		
р	$F + \frac{D}{3}$	2.56	2.79	2.793 ± 0.000	
п	$-\frac{2}{3}D$	-1.60	-1.86	-1.913 ± 0.000	
Σ^+	$F + \frac{D}{3}$	2.56	2.79	2.458 ± 0.010	
Σ^{0}	$\frac{D}{3}$	0.80	0.93	_	
Σ^{-}	$-F + \frac{D}{3}$	-0.97	-0.93	-1.160 ± 0.025	
Λ	$-\frac{D}{3}$	-0.80	-0.93	-0.613 ± 0.004	
$\Sigma^0 - \Lambda$	$\Lambda = \frac{D}{\sqrt{3}}$	1.38	1.61	$\pm 1.61 \pm 0.08$	
Ξ^0	$-\frac{2}{3}D$	- 1.60	-1.86	-1.250 ± 0.014	
Nov ^王	$-F + \frac{D}{3}$	-0.97	-0.93	-0.651 ± 0.003	

14

Lattice calculation for mBB

Erkol-Takahashi-Oka, Phys.Rev.D79:074509,2009. arXiv:0805.3068[hep-lat]

軽い構成クォークは構成子とみなせる?

Nov 27-28, 2009

問題

- Spin-flavor対称性、構成クォークの起源
- 励起状態=何が励起するのか

- 構成クォーク間の有効(残留)相互作用
- 散乱状態まで含めた5体系計算
- Nov 格子QCDによるマルチクォーク系の解析

16

重いフレーバー

udsMass m = 1.5 to 3.3 MeVMass m = 3.5 to 6.0 MeVMass $m = 105 + 25 \\ Mass m = 105 + 25 \\ M$

 $\begin{array}{c} c \\ m = 1.27 \substack{+0.07 \\ -0.11} \text{ GeV} \end{array} \begin{array}{c} b \\ m = 4.20 \substack{+0.17 \\ -0.07} \text{ GeV} \end{array} \begin{array}{c} t \\ m = 171.3 \pm 1.1 \pm 1.2 \text{ GeV} \end{array}$

Strong interactionが作り出す質量~数百MeV =>軽いクォークでは大きい 重いクォークでは小さい

重いクォークの領域では裸のクォークがいい自由度

Nov 27-28, 2009

重いクォークは構成子とみなせる?

Heavy quark hadrons

Jonathan L. Rosner, e-Print: hep-ph/0606166, AIP Conf. Proc. 870: 63-83, 2006

Nov 27-28, 2009

ハドロンの構造~中間子の動力学

現象論的なシナリオ カイラル対称性の自発的な破れ=>NGボソンの出現 =>低エネルギー現象を支配=>バリオンの構造に反映 パイオンの雲、スキルミオン

QCDからのシナリオ Large-Nc極限 ~ 弱く相互作用する中間子理論 バリオンはソリトン解

ゲージ/重力対応 適当なブレインの配置により5次元のゲージ理論に帰着 4次元に射影し様々なハドロン(中間子)モードを生成

Nov 27-28, 2009

クォーク模型では記述しにくい現象

- 中性子の電荷半径 $\langle r^2 \rangle_n = (-0.113 \pm 0.003 \pm 0.004) \, \text{fm}^2$
- 核子スピン $\left\langle \sum \sigma_z(n) \right\rangle = 0.33 \pm 0.03 \pm 0.05$

ハドロンの有効理論では中間子の雲によって説明できる

カイラル対称性の自発的な破れ が引き起こす動力学

質量生成 =>カイラル対称性の部分的な回復

NGボソンの動力学 ハドロンの異状構造の形成

軽いフレーバー <=> 重いフレーバー

Nov 27-28, 2009

Nov 27-28, 2009

Exotic hadron resonances Θ⁺, Λ(1405), ..., X(3872), Z⁺(4430), etc *Pentaquarks Hadronic molecule Tetraquarks*

Key question:

What multiquark configurations are possible?

Exotic hadron resonances Θ⁺, Λ(1405), ..., X(3872), Z⁺(4430), etc *Pentaquarks Hadronic molecule Tetraquarks*

Key question:

What multiquark configurations are possible?

Meson-baryon molecule Colorless correlation

Example in Nuclear Physics

Charmonium

28

Hadronic Molecule

- Relatively large, 1 fm or larger
- Small momentum transfer

カイラルダイナミックス、格子QCD

Nov 27-28, 2009

X(3872)
$$J^{PC} = 1^{++}$$
 $DD* 分子?$
ユニークな位置 $D^{+}D^{*-(3880)}$ Small phase space $J/\psi \omega(3879)$
X(3872.3) $D^{0}D^{*0}(3871.8)$ $J/\psi \rho(3871.6)$
Large phase space

アイソスピン? I = 0, or isospin breaking

$$\frac{Br(X(3872) \to \pi^+ \pi^- \pi^0 J/\psi)}{Br(X(3872) \to \pi^+ \pi^- J/\psi)} = 1.0 \pm 0.4 \pm 0.3$$

Nov 27-28, 2009

新ハドロンキックオフ

30

Gammerman et al, ArXiv:0911.4407 Dynamically generated model ~ hadronic molecule

$$\sum_{\substack{\text{SU(4) extension of}\\ \text{Chiral interaction}}} SU(4) = V + VG(\sqrt{s})T(\sqrt{s})$$
a-parameter

This needs renormalization => Genuine state

Takizawa et al

ccbar + DD* coupled channel

Core of I = 0 Source of isospin violation

相互作用の問題

しかし、π交換も存在(NG->Vの様な場合)安井-須藤

長距離、強い力 テンソル力 チャンネル結合により引力

Nov 27-28, 2009

Dynamically generated Resonances

Hadron-Hadron scatterings \rightarrow Molecular state

Hyodo, Jido, Hosaka Phys.Rev.C78:025203,2008. e-Print: arXiv:0803.2550 [nucl-th]

基底状態と カイラル相互作用を基盤にした散乱問題 ^{理論的に確立した} ハドロン相互作用

ハドロン励起状態の起源を探る = ハドロン分子 + 固有(クォーク)のもの

Nov 27-28, 2009

Example: Large-Nc

34

Determination of the T-matrix

Dispersion theory, N/D method *Solving the LS equation*

$$T(\sqrt{s}) = V + VG(\sqrt{s})T(\sqrt{s})$$

Required conditions:

- 1. Renormalization of $G \Rightarrow a$ -parameter
- 2. Natural $a_{natural}$ for molecular state
- 3. Deviation of *a* from $a_{natural}$ is absorbed in V

Consider KN ($\Lambda(1405)$) system

Nov 27-28, 2009

Input V: WT interaction

$$L = \operatorname{tr}(\overline{B}iDB) + \dots$$

$$D_{\mu}B = \partial_{\mu}B + \left[\frac{1}{2}(\partial_{\mu}\xi^{\dagger}\xi + \partial_{\mu}\xi\xi^{\dagger}), B\right] \qquad \xi = \exp(i\phi/2)$$
$$L_{WT} = \frac{1}{4f_{\pi}^{2}}\operatorname{tr}\overline{B}i\gamma^{\mu}[\phi\partial_{\mu}\phi - \partial_{\mu}\phi\phi, B] \sim \underbrace{\frac{\sqrt{s} - M}{2f_{\pi}^{2}}\overline{B}B\phi\phi}_{2f_{\pi}^{2}}$$

Piont like

$$B = \begin{pmatrix} \frac{\Sigma^{0}}{\sqrt{2}} + \frac{\Lambda}{\sqrt{6}} & \Sigma^{+} & p \\ \Sigma^{-} & -\frac{\Sigma^{0}}{\sqrt{2}} + \frac{\Lambda}{\sqrt{6}} & n \\ \Xi^{-} & \Xi^{0} & -\frac{2}{\sqrt{6}}\Lambda \end{pmatrix} \qquad \phi = \begin{pmatrix} \frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & \pi^{+} & K^{+} \\ \pi^{-} & -\frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & K^{0} \\ K^{-} & \overline{K}^{0} & -\frac{2}{\sqrt{6}}\eta \end{pmatrix}$$

Nov 27-28, 2009

Loop function

$$G(\sqrt{s}) \sim i \int \frac{d^4 q}{\left(2\pi\right)^4} \frac{2M}{\left(P-q\right)^2 - M^2 + i\varepsilon} \frac{1}{q^2 - m^2 + i\varepsilon}$$

G is divergent for the *contact interaction* V_{WT}

$$\begin{split} G(\sqrt{s}) = & \frac{2M_T}{(4\pi)^2} \Big\{ \underline{a(\mu)} + \ln \frac{M_T^2}{\mu^2} + \frac{m^2 - M_T^2 + s}{2s} \ln \frac{m^2}{M_T^2} \\ & + \frac{\bar{q}}{\sqrt{s}} [\ln(s - (M_T^2 - m^2) + 2\sqrt{s}\bar{q}) - \ln(-s + (M_T^2 - m^2) + 2\sqrt{s}\bar{q}) \\ & + \ln(s + (M_T^2 - m^2) + 2\sqrt{s}\bar{q}) - \ln(-s - (M_T^2 - m^2) + 2\sqrt{s}\bar{q})] \Big\} \end{split}$$

Determination of *natural a*_{natural}

(1) Natural G

T. Hyodo, D. Jido, A. Hosaka, Phys.Rev.C78:025203,2008; arXiv:0803.2550 [nucl-th]

For
$$M < \sqrt{s} < M + m$$

 $G(\sqrt{s}) < 0$ Natural *G*

Nov 27-28, 2009

(2) Boundary condition (matching)

$$T(\sqrt{s} = M) = V_{WT}$$

When $a_{\text{pheno}} \neq a_{\text{natural}}$ How to interpret the difference

$$G(\sqrt{s},a) = \frac{2M_T}{(4\pi)^2} \left\{ \underline{a(\mu)} + \ln \frac{M_T^2}{\mu^2} + \frac{m^2 - M_T^2 + s}{2s} \ln \frac{m^2}{M_T^2} + \dots \right\}$$
$$G(\sqrt{s}, a_{pheno}) = G(\sqrt{s}, a_{natural}) + \frac{2M}{2s} \left(a_{pheno} - a_{natural} \right)$$

$$G(\sqrt{s}, a_{pheno}) = G(\sqrt{s}, a_{natural}) + \frac{2m}{(4\pi)^2} \left(a_{pheno} - a_{natural}\right)$$
$$= G(\sqrt{s}, a_{natural}) + \Delta A$$

$$T(\sqrt{s})_{pheno} = \frac{1}{V_{WT}^{-1} - G(\sqrt{s}, a_{pheno})} = \frac{1}{V_{WT}^{-1} + \Delta A - G(\sqrt{s}, a_{natural})}$$

Nov 27-28, 2009

Modify the interaction

$$M_{\text{eff}} \equiv M_T - \frac{16\pi^2 f^2}{CM_T \Delta a}.$$

- The deviation from the natural value (different a) is absorbed into the interaction as a pole term
 (1) of mass M_{eff} and (2) of higher order
- If Δa is small (close to natural), $M_{\text{eff}} \rightarrow$ large Δa is large (different from natural), $M_{\text{eff}} \sim M_{\text{T}}$

Nov 27-28, 2009

Realistic case

Subtraction constants

TABLE I: Natural values and phenomenological values [43] for the subtraction constants with the regularization scale $\mu =$ M_i .

Λ(1405)	S = -1	$\bar{K}N$	$\pi\Sigma$	$\eta\Lambda$	$K\Xi$
	$a_{\mathrm{pheno},i}$	-1.042	-0.7228	-1.107	-1.194
	$a_{\text{natural},i}$	-1.150	-0.6995	-1.212	-1.138
	S = 0	πN	ηN	$K\Lambda$	$K\Sigma$
N*(1535)	$a_{\mathrm{pheno},i}$	1.509	-0.2920	1.454	-2.813
	$a_{\text{natural},i}$	-0.3976	-1.239	-1.143	-1.138

For S =-1 (~ $\Lambda(1405)$), a_{pheno} and a_{natural} are similar but For S = 0 (~N(1535)), they are very much different

Poles

▲ Dynamically generated (= V_{WT} + Natural *G*)

+ Phenomenological

Nov 27-28, 2009

Natural schemeとの比較

力学的に生成される状態と、固有の状態を判定 することができる

現実の共鳴はその重ね合わせ

その内訳はそれぞれ(力学的vs固有)の性質と 結合の強さによる

それらを理論的に変化させることで共鳴の性質を探る ことができるであろう。

Nov 27-28, 2009

まとめと今後

- まずはクォーク模型での考察は便利
- カイラルダイナミックスの重要性
 対称性の自発的な破れ=>NGボソンの出現
- ハドロン分子の形成
 重要なインプット=>ハドロン間相互作用 強さ、エネルギー依存性 チャンネル結合 フレーバーの破れ

ハドロン相関

 マルチクォーク系におけるカラー相関 高エネルギー反応、破砕関数で探る?

関連 す る meeting

HNP09 11/16(Mon) - 19(Thu) 阪大

新ハドロン旗あげ、総括班主催研究会 11/27(Fri) - 28(Sat)、名古屋

ストレンジネス・新ハドロン(理論)合同研究会 12/11(Fri) - 12/12(Sat)、阪大

NFQCD 2/1(Mon) - 2/18(Thu)基研