

Particle ID at Belle-II

居波賢二 名古屋大学高エネルギー物理学研究室

- TOP (Time Of Propagation) counter
 - Developing to upgrade the barrel PID detector
 - For super KEKB/Belle-II
 - $L_{peak} \sim 8 \times 10^{35}$ /cm²/s, ~50 times higher than present
 - Need to work with high beam BG
 - To improve K/ π separation power
 - Physics analysis
 - B→ππ/Kπ, ργ, Kνν etc.
 - Flavor tag
 - Full reconstruction

Side view of Belle II detector

- <u>Cherenkov ring in quartz bar</u>
 - Reconstruct ring image using ~20 photons on the screen reflected inside the quartz radiator as a DIRC.
 - Photons are detected with photon detectors.

- Quartz: $255 \text{cm}^{\text{L}} \times 40 \text{cm}^{\text{W}} \times 2 \text{cm}^{\text{T}}$
 - Focus mirror at 47.8deg.

to reduce chromatic dispersion

- Multi-anode MCP-PMT
 - Linear array (5mm pitch), Good time resolution (<~40ps)
 - \rightarrow Measure Cherenkov ring image with timing information

Expected performance

• K/ π separation power

- Multi-alkali photo-cathode + Focusing mirror

- Current Belle performance
 - Efficiency; 90~80%
 - Fake rate; 5~10%

Prototype development

• Demonstration of the performance

Photon detector

- Square-shape multi-anode MCP-PMT
 - Multi-alkali photo-cathode
 - Single photon detection
 - Fast raise time: ~400ps
 - Gain=1.5x10⁶ @B=1.5T
 - T.T.S.(single photon): ~35ps @B=1.5T
 - Position resolution: <5mm
- Semi-mass-production (14 PMTs)

PMT module

- HV divider + AMP + Discriminator
- Small size (28mm^W)
- Prototype
 - Fast AMP (MMIC, 1GHz, x20)
 - Fast comparator (180ps propagation)
 - CFD with pattern delay
- Performance
 - Test pulse
 - ~5ps resolution
 - MCP-PMT
 - □ σ<40ps
 - Working well

Quartz radiator

- Made by Okamoto optics
- Check the quality for time resolution
 - Single photon pulse laser
 □ λ=407nm
 - MCP-PMT
 - Several incident position
- → No degradation of time resolution
 - Enough quartz quality

175mm

440mm

910mm

50mm

(2

3

Chromatic dispersion effect

- Range of detectable wavelength of Cherenkov photons
 - \rightarrow Time fluctuation of the Cherenkov ring image

 \rightarrow Time resolution depends on the propagation length.

Check the degradation of time resolution by beam test

Beam test

- At Fuji beam line in June and Dec.
- Using real size quartz and MCP-PMT
 - MCP-PMT: Multi-alkali p.c., C.E.=60%

Ring image Belle 11

Relie II Number of detected photons

- Normal incidence (90 deg.)
- Obtained number of photons as expected
- \rightarrow We can expect ~22 photons/event, if we use 14 PMTs.
 - − Normalized by active area ($10 \rightarrow 14$ PMTs)

Time resolution vs. propagation length

Check time resolution

Data agrees well with simulation expectation.
 → Confirmed the level of chromatic dispersion effect

⊷ch4

- TOP counter for barrel PID upgrade at Belle-II
 - Cherenkov ring imaging with precise timing information (σ <40ps)
 - Design studies are going.
- Prototype development
 - Multi-anode MCP-PMT
 - Enough performance of TTS, QE for TOP counter
 - Integrated module with amplifier and CFD
 - Quartz radiator
 - Enough quartz quality for single photon detection
- Performance test with beam
 - Proper ring image, number of detected photons (15.7 photons)
 - Time resolution as expected by simulation
 - \rightarrow Confirmed chromatic dispersion effect

- Based on our high resolution TOF
 - \Box σ =6.2ps with 6µm MCP-PMT, Cherenkov light in quartz
 - and special electronics
- Time difference btw two counters

Multi-anode MCP-PMT (1)

	1ch	2ch	3ch	4ch	
Ċ					-'
	22(effective area)				

)	Size	27.5 x 27.5 x 14.8 mm	
	Effective area	22 x 22 mm(64%)	
	Photo cathode	Multi-alkali	
	Q.E.	~20%(λ=350nm)	
	MCP Channel diameter	10 µm	
	Number of MCP stage	2	
	Al protection layer	No	
	Aperture	~60%	
	Anode	4 channel linear array	
	Anode size (1ch)	5.3 x 22 mm	
	Anode gaps	0.3 mm	

SL10

R&D with Hamamatsu for TOP counter

- Large effective area
- Position information

64% by square shape 4ch linear anode (5mm pitch)

Belle II Multi-anode (2)

- Single photon detection
- Fast raise time: ~400ps
- Gain=1.5x10⁶ @B=1.5T
- T.T.S.(single photon): ~30ps @B=1.5T
- Position resoltion: <5mm
- Correction eff.: ~50%
 - Nucl. Instr. Meth. A528 (2004) 768.
- Basic performance is OK!
 - Same as single anode MCP-PMT

