Heavy-light meson spectrum and decay constant by $N_f = 2 + 1$ lattice QCD

arXiv:0810.2364

Yusuke Namekawa(Univ. of Tsukuba) for the PACS-CS collaboration

S.Aoki, K-I.Ishikawa, N.Ishizuka, T.Izubuchi, K.Kanaya, Y.Kuramashi, Y.Namekawa, M.Okawa,

Y.Taniguchi, A.Ukawa, N.Ukita, T.Yamazaki, T.Yoshie

Contents

1	Introduction				
2	2 Simulation setup				
3	Results				
	3.1 Charm-strange spectrum	• • •			
	3.2 Charm-ud spectrum \ldots \ldots \ldots \ldots \ldots	• • •			

13

4 Summary

1 Introduction

[Motivation (I)]

CKM matrix element $|V_{cs}|$ can be extracted through leptonic decay with lattice data of f_{Ds} .

$$\Gamma(D_s \to l\nu) = \frac{G_F^2}{8\pi} f_{Ds}^2 m_l^2 m_{Ds} \left(1 - \frac{m_l^2}{m_{Ds}^2}\right)^2 |V_{cs}|^2$$

 $|V_{cd}|$ can be determined precisely by neutrino and antinuetrino scattering experiments. On the other hand, determination of $|V_{cs}|$ is hard, due to uncertainty of strange quark sea contribution.

[Motivation (II)]

 f_{Ds} may give a signal beyond the standard model.

• HPQCD collaboration reported that their f_{Ds} from lattice QCD disagrees with experimental data by 3.8σ .

$$f_{Ds}(experiment) = 277(9) \text{MeV}$$

 $f_{Ds}(lattice) = 241(3) \text{MeV}$ HPQCD,2008

 \leftarrow A two-Higgs doublet model predicts there may be substantial contribution of charged Higgs to f_{Ds} (in addition to W^{\pm} , H^{\pm} propagates) J.L.Hewett,1995;A.G.Akeroyd,2004;A.G.Akeroyd and C.H.Chen,2007. The contribution to f_D is negligible.

We try to check this problem using a relativistic heavy quark on the $N_f = 2 + 1$ configurations.

2 Simulation setup

We perform a lattice QCD simulation of a charm quark system using a relativistic heavy quark on the PACS-CS configurations. [Statistics] – Preliminary –

- Action : RG improved gauge + O(a) improved Wilson fermion for light sea quarks + relativistic heavy quark for valence charm quark
- Lattice size : $32^3 \times 64 \ (L = 3 \text{ fm}, \ a^{-1} = 2.2 \text{ GeV} \ (\beta = 1.90))$
- Sea quark masses : $m_{ud} = 3 10$ MeV, $m_s = 70 80$ MeV ($m_{\pi} = 160 - 300$ MeV, $m_{\pi}L = 2.3 - 4.3$) \leftarrow Calculation just on the physical point is ongoing.
- Inputs : m_{π}, m_K, m_{Ω} for $m_{ud}, m_s, a; \overline{m}(1S) \equiv \frac{1}{4}(m_{\eta_c} + 3m_{J/\psi})$ for m_{charm}

κ_{ud}	κ_s	m_{ud}^{AWI} [MeV]	m_s^{AWI} [MeV]	N_{conf} (MD time)
0.13770	0.13640	10	80	80(2000)
0.13781	0.13640	3	80	65 (1625)
0.13770	0.13660	10	70	60 (1500)
0.137785	0.13660	3	70	200 (1000)

3 <u>Results</u>

3.1 Charm-strange spectrum

- Spectrum is reproduced well except for the hyperfine splitting.
- The hyperfine splitting is slightly underestimated. \rightarrow Possible origins of the discrepancy are $O(g^2a)$ effects in RHQ action, dynamical charm quark effects.
- (For unstable particles, more detailed analysis using Lüscher's formula is needed.)

- 6 / 13 -

[Orbital excitation and fine structure]

• The orbital excitation and fine structure are reproduced well, though our statistical errors are still large.

[Decay constant f_{Ds}]

- Our result does not show any clear deviation from experimental values and other group data except for HPQCD and UKQCD result.
 - \Diamond HPQCD and UKQCD result is updated recently. Their result goes up if new r_1 data is employed. HPQCD and UKQCD,2009
 - \diamond We employ 1-loop values for renormalization factors of decay constants. Continuum extrapolation is needed. Effects of renormalization factors are reduced in the ratio of f_{Ds}/f_D .

- 8 / 13 -

[CKM matrix element $|V_{cs}|$]

- Combining our results of m_{Ds} and f_{Ds} with experimental value of $\Gamma(D_s \rightarrow l\nu)$ CLEO,2009 gives $|V_{cs}|$.
- Our result is consistent with PDG value, though our value include systematic errors due to finite lattice spacing.

$$\Gamma(D_s \to l\nu) = \frac{G_F^2}{8\pi} f_{Ds}^2 m_l^2 m_{Ds} \left(1 - \frac{m_l^2}{m_{Ds}^2}\right)^2 |V_{cs}|^2$$

 $|V_{cs}|(\text{our result}) = 0.99(3) + (\text{systematic error})$ $|V_{cs}|(PDG, 2008) = 1.04(6)$

3.2 Charm-ud spectrum

- Spectrum is reproduced, though our statistical errors are still large. \rightarrow We increase the statistics now.
- (For unstable particles, more detailed analysis using Lüscher's formula is needed.)

[Orbital excitation and fine structure]

• Orbital excitation is reproduced well, though our statistical errors are still large.

 $\langle D_0^*(\text{scalar}) \rangle$ has not been confirmed experimentally, yet)

 $[\text{Decay constant } f_D]$

- Our result does not show any clear deviation from experimental value and other group data except for HPQCD and UKQCD result.
 - \diamond HPQCD and UKQCD result goes up if new r_1 data is employed.
 - \diamondsuit We employ 1-loop values for renormalization factors of decay constants. Continuum extrapolations is needed.

4 Summary

We performed a simulation of a charm quark system using RHQ action on $N_f = 2+1$ PACS-CS configurations.

- Mass spectrums are reproduced well except for hyperfine splittings.
 - \diamond Our data of the hyperfine splitting are slightly smaller than the experimental value. \rightarrow Possible origins of the discrepancy are $O(g^2a)$ effects in RHQ action, dynamical charm quark effects, and disconnected loop contributions.
- Decay constant f_{D_s} do not show any deviations from experimental values. \leftarrow But, since we employ 1-loop renormalization factors, continuum extrapolations are needed for a conclusion.

