Multiquark hadrons in a quark model

Sachiko Takeuchi (Japan College of Social Work) Makoto Takizawa (Showa Pharmaceutical Univ) and Kiyotaka Shimizu (Sphia Univ)

Revised March 2006 by C. Anusice Actionality, meson arkt in the conversion of the second The constituent our X u nas in QCD suggesu mectrum as bound Cee our review on s), or qq-palle color & caustence of a low-mase

Pentaguarks' (q⁴q̄)

• Θ⁺, Ξ, ···

NON-qq MESONS

 Baryon resonances with a large width $\rightarrow \Lambda(1405), \Delta(1232), N(1440), ...$

> S.T. and K Shimizu, P.R. C76, 035204(07); S.T. and K Shimizu, P.R. C79, 045204(09)

Adding $(q\bar{q})$ is important because of the parity. A baryon with the meson cloud can be understood as a 'pentaquark'.

NON-qq Non ag meson candic ne construm as bour review of sugger or qq-pau of a low-mase pectrum as in review QCD sugger or qq-pau of a low-mase rectrum (see our review QCD sugger or qq-pau of a low-mase tes February Revised In 2003, the field , and s quarks, Diakono--no. Infatteniza 1. $(q\bar{q})^2$ Mesons? Refs. Particle Data Group • qcqc ? C. Amsler et al., Phys. Lett., B667, 1 (08) X(3872), Y(4140), Z(4430)[±], ... • qsqc? D^{*}_{s0}(2317)[±], D^{*}_{s1}(2460)[±], D*1(2536)[±], D*2(2573)[±] • qsqs or K+K-? ao(980), fo(980), X(1576)

~ Amsler (rescribes into Server, esons

NS

28 Nov, 2009 @名古屋09

PENTAQUAR.

- amost re

for the exist.

Amsler describes at into However, PENTAQUAR. i more sons w almost re for the exist. NON-qq Non ag meson candid ne construm as bounder of a low-mase ne construm as bounder of a low-mase ne construm as bounder of a low-mase ne construm as a neview of a low-mase ne construm as a neview of a low-mase les^r February Revised In 2003, the fie The const. , and s quarks, Diakona -no. Infatteniza 1. $(q\bar{q})^2$ Mesons? Refs. Particle Data Group qcqc? C. Amsler et al., Phys. Lett., B667, 1 (08) X(3872), Y(4140), Z(4430)[±], ... • qsqc? D^{*}_{s0}(2317)[±], D^{*}_{s1}(2460)[±], D*1(2536)[±], D*2(2573)[±] qsqs or K+K-? ao(980), fo(980), X(1576)

NS

• X(3872)

- M(X) = 3872.3±0.8 MeV
- Γ = 3.0+2.1-1.7 MeV
- $I^{G}(J^{PC})=0?(?^{+}) J^{PC}=1^{++}, 2^{-+}?$
- $I=0 \leftarrow No X^{\pm}$ found
- In $B^{\pm} \rightarrow K^{\pm}X$, $p\bar{p} \rightarrow X$, but not in e^+e^-
- decay mode $X \rightarrow J/\psi \pi^2$, $J/\psi \pi^3$, $J/\psi \gamma$
- $\Gamma(X \rightarrow J/\psi \gamma)/\Gamma(X \rightarrow J/\psi \pi^2) = 0.14 \pm 0.05$
- r(X→J/ψπ³)/Br(X→J/ψπ²) =1.0±0.4±0.3
 Abe etal arXiv:hep-ex/0505037v1 28 Nov, 2009 @名古屋09

- 'charged X[±] (ucdc)' threshold
 - D[±]D^{*0} = 3876.6MeV
 - D⁰D*∓ = 3875.1MeV
 - $J/\psi \rho = 3872.4 \text{MeV}$

 $M(X^0)$ = 3872.3±0.8 MeV

• $J/\psi \pi^+$ = 3236.5MeV

If there is no special symmetry, there should not be a bound state. Even if so, since ρ width is large (~150MeV), it would be difficult to make a clear peak.

Realistic Calc. - qqcc

Resonating group method approach

- $\Psi = \sum c_{km} \psi_m^c \psi^f \psi^\sigma \psi_k^{orb}$
- $\psi^f = u c \overline{u} \overline{c}, d c \overline{d} \overline{c}$ for the neutral; $u c \overline{d} \overline{c}$ for the charged
- $\psi^{c} = (\psi^{c}(1)\psi^{c}(4))(\psi^{c}(2)\psi^{c}(3)), \ (\psi^{c}(1)\lambda\psi^{c}(4))(\psi^{c}(2)\lambda\psi^{c}(3))$
- $\psi^{\sigma} = J/\psi$ is spin 1
- $\psi^{orb} = \sum c_k \phi_1(\text{meson})\phi_2(\text{meson})\chi_k(\text{relative})$
 - $= (\overline{D}^{0} D^{*0} \overline{D}^{*0} D^{0})\chi, \ (D^{+} D^{*-} D^{*+} D^{-})\chi,$
 - $(J/\psi \rho^0)\chi, \ (J/\psi \omega)\chi$ for the neutral
 - = $(\overline{D}^0 D^{*+})\chi$, $(D^+ \overline{D}^{*0})\chi$, $(J/\psi \rho^+)\chi$ for the charged

Realistic Calc. - qqcc

Resonating group method approach

meson (solved) $\Psi = \sum c_{km} \psi_m^c \psi^f \psi^\sigma \psi_k^{orb}$ $\psi^f = u c \overline{u} \overline{c}, d c \overline{d} \overline{c}$ for the neutral; $u c \overline{d} \overline{c}$ for the charged $\psi^{c} = (\psi^{c}(1)\psi^{c}(4))(\psi^{c}(2)\psi^{c}(3))$ $\psi^{\sigma} = J/\psi \text{ is spin } 1$ $\chi^{c}(2)\lambda\psi^{c}(3))$ ψ^{orb} $= \sum c_k \phi_1(\text{meson}) \phi_2(\text{meson}) \chi_k(\text{relative})$ $= (\overline{D}^{0} D^{*0} - \overline{D}^{*0} D^{0}) \chi, (D^{0}) \chi$ $(J/\psi \, \rho^0) \chi, \ (J/\psi \, \omega) \chi$ for the neutral $= (\overline{D}^0 D^{*+})\chi, \ (D^+ \overline{D}^{*0})\chi,$ (a^+) the charged

Realistic Calc. - qqcc

short-range deformation

- $\Psi = \sum c_{km} \psi_m^c \psi^f \psi^\sigma \psi_k^{orb}$
- $\psi^f = u c \overline{u} \overline{c}, d c \overline{d} \overline{c}$ for the neutral; $u c \overline{d} \overline{c}$ for the charged
- $\psi^{c} = (\psi^{c}(1)\psi^{c}(4))(\psi^{c}(2)\psi^{c}(3)), (\psi^{c}(1)\lambda\psi^{c}(4))(\psi^{c}(2)\lambda\psi^{c}(3))$ $\psi^{\sigma} = J/\psi \text{ is spin 1}$
- $\psi^{orb} = \sum c_k \exp\left[-\sum \beta_{ij}^{(k)} r_{ij}^2\right]$

'all' the orbital correlations

Hamiltonian for quarks

H = Nonrela Kin + linear Conf + OGE + lns + π , σ exch + ele-mag Kinetic term with u, d mass difference $K = \sum m_i + \frac{p_i^2}{2m_i^2}$ for c-quark D^0-D^{\pm} mass diff etc. is reproduced. $K = \sum \overline{m} + \frac{p_i^2}{2\overline{m}^2} + \Delta m_i \quad \text{for u-, d-quarks}$

where

 $\overline{m} = (m_u + m_d)/2 \quad \text{with} \quad \Delta m_i = \{ \sqrt{m_i^2 + p_i^2} - \sqrt{\overline{m}^2 + p_i^2} \\ 0 \quad \text{for color}_8 \text{ quark pairs} \}$

Hamiltonian for quarks

• H = Nonrela Kin + linear Conf + OGE + lns + π , σ exch • OGE

Hamiltonian for quarks

Ins (affects only light quark pairs.)

$$V_{\text{INS}} = \sum_{i < j} \frac{V_0}{2} \xi_i \xi_j \left(1 + \kappa \frac{3}{32} \lambda_i \cdot \lambda_j + \frac{9}{32} \underline{\lambda_i} \cdot \lambda_j \sigma_i \cdot \sigma_j \right) \mathcal{P}'_{ij} \delta^3(\mathbf{r}_{ij})$$
$$V_{\text{INS}}^{(a)} = \sum_{i < j} -\frac{V_0}{2} \xi_i \xi_j \mathcal{P} \mathcal{P}'' \left(1 - \frac{3}{32} \lambda_i \cdot \lambda_j + \frac{9}{32} \lambda_i \cdot \lambda_j \sigma_i \cdot \sigma_j \right) \delta^3(\mathbf{r}_{ij})$$

Estimate by (Os)⁴

Effects of the interaction on $q\bar{q}$ pairs Rough sizes are obtained from N Δ , and $\eta' - \eta$ mass differences.

Color	Spin	Flavor	CMI	OgE-a	Ins	E[MeV]	States
1	0	1	-16	0	12	84	η ι
1	0	8	-16	0	-6	-327	π η_8
1	1	1	16/3	0	0	63	ω
1	1	8	16/3	0	0	63	ρ
8	0	1	2	0	3/4	41	
8	0	8	2	0	-3/8	15	
8	1	1	-2/3	9/2	9/4	97	
8	1	8	-2/3	0	-9/8	-34	DD* attraction

Estimate by (Os)⁴

Effects of the interaction on $q\bar{q}$ pairs Rough sizes are obtained from N Δ , and $\eta' - \eta$ mass differences.

Color	Spin	Flavor	CMI	OgE-a	Ins	E[MeV]	States
1	0	1	-16	0	12	84	η 1
1	0	8	-16	0	-6	-327	π η_8
1	1	1	16/3	0	0	63	ω
1	1	8	16/3	0	0	63	ρ
8	0	1	2	0	3/4	41	
8	0	8	2	0	-3/8	15	
8	1	1	-2/3	9/2	9/4	97	
8	1	8	-2/3	0	-9/8	-34	DD* attraction

Realistic Calc. - mesons

meson masses

	calc.	exp.		calc.	exp.
ρ ⁰	775.50	775.50	D ⁰ D*0	3871.20	3871.20
ω	782.65	782.65	J/ψρ ⁰	3872.42	3872.42
J/ψ	3096.92	3096.92	D±D*±	3879.59	3879.30
D ⁰	1864.56	1864.50	J/ψω	3879.57	3879.57
D*0	2006.64	2006.70			
D±	1869.54	1869.30			
D*±	2010.05	2010.00			

Coupling to $C\overline{C}$

• $q(q\bar{q}) \rightarrow q$, $\bar{q}(q\bar{q}) \rightarrow \bar{q}q$ transfer interaction $V_{i;j\overline{k}} = \lambda_i \cdot \lambda_{\overline{k}j} \frac{\alpha_s}{4} \frac{\pi}{m_a^2} \left[\left(\frac{k}{2m_a} - \frac{p_i + p'_i + i\sigma_i \times k}{2m_i} \right) \cdot \sigma_{\overline{k}j} \right] \delta_{\overline{k}j}^f$ consider only btw (Os)⁴ and (1p) $V_{tr} = |(q\bar{q})^2(0s)^4\rangle V_{OGE} \langle q^2(1p)|$ Pole energy = 3950MeV Godfrey Isgur PRD32, 189 (85)

Case 1 Small cc compo. Deeply bound I=1 $J/\psi\omega, D^{*+}D^{-}\overline{D}^{*0}D^{+}$ **N*+D**0 $J/\psi\rho, D^{*0}\overline{D}^{0}$ $J/\psi \omega$ -like

Case 2 Large $c\bar{c}$ compo. No bound I=1 $J/\psi \omega, D^{*+}D^{-}\bar{D}^{*0}D^{+}$

 $J/\psi\rho, D^{*0}\overline{D^{0}} = \frac{D^{*0}D^{+}}{J/\psi}\rho$

 $J/\psi \omega$ -like

 $J/\psi \rho$ -like

wave function (case 2)

$(q\bar{q}c\bar{c}+c\bar{c})$ Case-1

Stronger attraction for qcqc, weaker coupling to cc.

 $J/\psi \omega J/\psi \rho DD^*$

state	BE	C ₁ TO	C1T1	C ₈ T0	C ₈ T1	pole
J/ψ ρ ⁰ -like	21.6	0.01	0.26	0.03	0.67	0.00
J/ψω-like	0.4	0.48	0.01	0.43	0.06	0.01
$J/\psi \rho^+$ -like	20.5	_	0.30	_	0.69	_

×(phase space) \rightarrow Br(X \rightarrow J/ $\psi \pi^3$)/Br(X \rightarrow J/ $\psi \pi^2$)

$(q\bar{q}c\bar{c}+c\bar{c})$ Case-2

Weaker attraction for qcqc, stronger coupling to cc.

 $J/\psi \omega J/\psi \rho DD^*$

state	BE	C ₁ TO	C1T1	C ₈ T0	C ₈ T1	pole
$J/\psi \rho^0$ -like	-	Λ				
$J/\psi \omega$ -like	5.2	0.11	0.04	0.44	0.09	0.37
J/ψ ρ+-like	_					

×(phase space) \rightarrow Br(X \rightarrow J/ $\psi \pi^3$)/Br(X \rightarrow J/ $\psi \pi^2$)

Case 1 Small cc compo. Deeply bound I=1 $J/\psi\omega, D^{*+}D^{-}\overline{D}^{*0}D^{+}$ **N*+D**0 $J/\psi\rho, D^{*0}\overline{D}^{0}$ $J/\psi \omega$ -like

Case 2 Large $c\bar{c}$ compo. No bound I=1 $J/\psi\omega, D^{*+}D^{-}\overline{D^{*0}D^{+}}$

 $J/\psi\rho, D^{*0}\overline{D}^0$

 $J/\psi \omega$ -like

 $J/\psi \rho$ -like

Case 2 Large $c\bar{c}$ compo. No bound I=1 $J/\psi \omega, D^{*+}D^{-}\overline{D^{*0}D^{+}}$

 $J/\psi \rho, D^{*0}\overline{D}^{0} = J/\psi \rho$ $J/\psi \omega - like$ $J/\psi \rho \text{ compo: 4\%}$

Case 2 Large cc compo. No bound I=1

 $J/\psi\omega, D^{*+}D^{-}\overline{D}^{*0}$ $J/\psi \rho, D^{*0}\overline{D}^{0}$ $J/\psi \omega$ -like $J/\psi \rho$ compo: 4%

Numerical results: Energy spectrum Lambda = 0.3 GeV $|X\rangle = 0.327 |c\bar{c}\rangle + 0.863 |DD^*; I = 0\rangle + 0.384 |DD^*; I = 1\rangle$ CC-bar state

Numerical results: Energy spectrum

• Lambda = 0.5 GeV

Case 2 Large cc compo. No bound I=1

 $J/\psi\omega, D^{*+}D^{-}\overline{D}^{*0}$ $J/\psi \rho, D^{*0}\overline{D}^{0}$ $J/\psi \omega$ -like $J/\psi \rho$ compo: 4%

Large cc compo. No bound I=1

 $J/\psi\omega, D^{*+}D^{-}\overline{D}^{*0}D^{+}$ $J/\psi \rho, D^{*0}D^{0}$ $J/\psi \omega$ -like $J/\psi \rho$ compo: 4%

Summary

- The qcq̄c̄+cc̄ (J^{PC}=1⁺⁺) states are investigated by a quark model.
- ud quark mass diff and ele-mag int btw quarks are introduced \rightarrow D*⁰D⁰-D*+D⁻ threshold difference.
- RGM-type calculation with the short range deformation is employed.

Summary

- $qc\bar{q}\bar{c}+c\bar{c}$ (J^{PC}=1⁺⁺, ud mass diff & ele)
 - ☆ X(3872) can be explained as a shallow bound state just below the threshold, with the cc̄ component 1%~40%.
 - ☆ Large amount of the cc̄ component will smare the cc̄ peak, which is predicted by the cc̄ quark model but seems not to exist.

Summary

 $qc\bar{q}\bar{c}+c\bar{c}$ (J^{PC}=1⁺⁺, ud mass diff & ele)

☆I=0 is main component for this shallow state, but I=1 component is also mixed by 1/13~1/4.

 $\rightarrow \text{Br}(X \rightarrow J/\psi \pi^3)/\text{Br}(X \rightarrow J/\psi \pi^2)$

There may be a bound states where I=1 is main component. They will probably not be seen because of the broad width.

Outlook

- Baryons with large width may be understood as (meson-baryon + baryon quark core) systems.
- Heavy mesons with small width may be understood as (2-meson4molecule + multiquark state + QQbar core) systems.
 C-parity